Databases and SQL for Data Science with Python

Mark as Favorite Share
image

What Will You Learn?

Analyze data within a database using SQL and Python.
Create a relational database and work with multiple tables using DDL commands. 
Construct basic to intermediate level SQL queries using DML commands. 
Compose more powerful queries with advanced SQL techniques like views, transactions, stored procedures, and joins. 

About This Course

Provider: Coursera
Format: Online
Duration: 29 hours to complete [Approx]
Target Audience: Beginners
Learning Objectives: After completing this free course, you'll be able to analyze multiple real-world datasets to demonstrate your skills.
Course Prerequisites: NA
Assessment and Certification: NA
Instructor: IBM
Key Topics: SQL, Relational Database Management System (RDBMS), Cloud Databases, Python Programming, Jupyter notebooks, Data Science
Topic Covered: 
  1. - Welcome to SQL for Data Science
  2. - Introduction to Databases
  3. - SELECT Statement
  4. - COUNT, DISTINCT, LIMIT
  5. - INSERT Statement
  6. - UPDATE and DELETE Statements
  7. - Relational Database Concepts
  8. - Types of SQL statements (DDL vs. DML)
  9. - CREATE TABLE Statement
  10. - ALTER, DROP, and Truncate tables
  11. - How to create a Database instance on Cloud
  12. - Using String Patterns and Ranges
  13. - Sorting Result Sets
  14. - Grouping Result Sets
  15. - Built-in Database Functions
  16. - Date and Time Built-in Functions
  17. - Sub-Queries and Nested Selects
  18. - Working with Multiple Tables
  19. - How to Access Databases Using Python
  20. - Writing code using DB-API
  21. - Connecting to a database using ibm_db API
  22. - Creating tables, loading data and querying data
  23. - Analyzing data with Python
  24. - Working with Real World Datasets
  25. - Getting Table and Column Details
  26. - Views
  27. - Stored Procedures
  28. - ACID Transactions
  29. - Join Overview
  30. - Inner Join
  31. - Outer Joins

0 Comments

No reviews yet !!

Please login first